ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Расходомеры-счетчики вихревые погружные V-Bar	Внесены в Государственный реестр средств измерений Регистрационный № 14919-06 Взамен №14919-00
	""2006 г.
	СОГЛАСОВАНО Руководитель ГЦИ СИ ФГУП "ВНИИМС" В.Н. Яншин

Выпускаются по документации фирмы EMCO Flow Systems a Division of Spirax Sarco, Inc. (EMCO), США.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Расходомеры-счетчики вихревые погружные V-Bar (далее – расходомеры) предназначены для измерений расхода и количества жидкости, газа и пара, а также приведения посредством вычислений результатов измерений расхода и объема газа к стандартным условиям

Основными областями применения являются системы контроля и регулирования, в том числе и для учетно-расчетных операций в промышленности, коммунальном и сельском хозяйстве.

ОПИСАНИЕ

Расходомеры состоят из первичного преобразователя расхода вихревого типа, электронного блока расходомера, термопреобразователя, датчика давления и вычислителя, соединенных между собой кабелями.

Расходомеры могут иметь моноблочное исполнение, при котором электронный блок установлен на первичном преобразователе расхода и раздельное исполнение, при котором электронный блок соединяется с первичным преобразователем расхода с помощью кабеля.

Первичный преобразователь расхода выполнен в виде штанги, на которой с одной стороны закреплен приемник скорости потока измеряемой среды, а с противоположной – клеммная коробка, устройство крепления или подъемник. Приемник скорости потока представляет собой трубу с телом обтекания, в виде трапециидальной призмы, направленной широким основанием навстречу потоку и размещенным на ней крылом с чувствительным элементом, воспринимающим пульсации давления. Принцип действия преобразователя расхода основан на измерении частоты образования вихрей, срывающихся с тела обтекания пропорционально скорости потока рабочей среды.

Для вычисления массового расхода жидкости и пара, приведения к стандартным условиям объемного расхода газа, используется вычислитель FP-93, датчик давления PT(X) и термопреобразователи TEM, поставляемые по заказу. Термопреобразователь может быть вмонтирован в штангу, а датчик давления устанавливается на устройстве крепления расходомера через запорный клапан.

Степень защиты от воздействия окружающей среды расходомера, датчика давления, термопреобразователей - IP65, вычислителя - IP65 или IP20.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Диаметр трубопровода, Д ₂₀ , мм	
Пределы допускаемой относительной погрешности измерений объег	много расхода и объема, %:
• жидкости	±1,0
• газа и пара	±1,5
Пределы допускаемой относительной погрешности измерений объе	много расхода и объема газа, при-
веденных к стандартным условиям, %	$\pm 2,0$
Пределы допускаемой относительной погрешности измерений массо	ового расхода и массы, %:
• жидкости	±1,2
• газа и пара	±2,0
Максимальная скорость потока, V _{max} :	
• жидкости, м/с	9
• газа и пара, м/с	91
Минимальная скорость потока, V _{min} :	
• жидкости, м/с	0,5
• газа и пара, м/с	$\sqrt{74}$ FIR $Q = [KE/M^3]$
• Таза и пара, м/с	$\sqrt{\frac{\rho}{\rho}}$, ide ρ - [Ki/M]
Диапазоны измеряемых расходов (в зависимости от диаметра):	1 7
 воды, м³/ч. 	OT 7-155 TO $5 \cdot 10^3 - 1 \cdot 1 \cdot 10^5$
• газа, м ³ /ч (0,6 МПа, 20°С).	
• насыщенного пара, т/ч (0,6 МПа, 165°С)	
Диапазоны расходов рассчитываются по формулам:	0,20-3,3 до 107-3000
	$a.V.H^2$
Объемный расход $Q_V = \frac{V \cdot \mathcal{A}_{20}^2}{353.7}, \frac{M^3}{4},$ Массовый рас	ХОД $Q_M = \frac{p \cdot v \cdot \mathcal{A}_{20}}{252.7}, \frac{\kappa \epsilon}{v}$
,	,
Динамический диапазон измерения расхода газа и пара: от 1:10 до 1	
Диапазон температур рабочей среды, °С	
Рабочее избыточное давление измеряемой среды, МПа	ОТ 0 до 13,8
Выходные сигналы, пропорциональные текущему расходу: частотный (импульсный), Гц	0.500/1000/2000/5000/10000
· • • • • • • • • • • • • • • • • • • •	
токовый, мА	
• кодовый	
Температура окружающего воздуха, °С	•
Относительная влажность, %	
Питание от сети: постоянного тока, В	24_{-6}^{+10}
• переменного тока, В	$\dots 220^{+22}_{-33}$
• частотой, Гц	50±1
Ток потребления, мА	

У	словия	применения

						_	
	Тип измера	яемой с	реды	Параметры среды			
Модель	Жидкость	Газ	Пар	Температура,	Давление,	Материал уплот-	Диаметры
V-Bar				°C	МПа, избыт.	нения	Ду, мм
600	Да	Да	Нет	минус 40-204	0-0,862	Viton TM	75-2000
60S	Нет	Нет	Да	минус 40-204	0-0,862	Этилен-пропилен	75-2000
700	Да	Да	Да	минус 40-260	$0-13,8^{1}$	Swagelok™	75-2000
910	Да	Да	Да	минус 40-204	0-ANSI ²	Фторопласт	75-2000
960	Да	Да	Да	минус 40-260	0-ANSI ²	Grafoil™	75-2000

Примечание:

- 1. Для конической дюймовой резьбы NPT (К2" по ГОСТ 6111-52) и фланцев класса 900 по ANSI.
- 2. Определяется классом фланцев (максимально 15,2 МПа изб. при 38°С и 12,4 МПа изб. при 260°С)

ГАБАРИТНЫЕ РАЗМЕРЫ И МАССА СОСТАВНЫХ ЧАСТЕЙ

Наименование	Модель	Длина, мм	Высота, мм	Ширина, мм	Масса, кг
Расходомер	V-Bar-600/60S	560	991	150	12,7
Расходомер	V-Bar-700	350	830	130	4,1-9,1
Расходомер	V-Bar-910/960	450	1270	150	13,6-21,3
Датчик давления	PT (PTX)	110	50	50	0,4-1,5
Термопреобразова-	TEM-30-	241-495	40	114	1,0-2,0
тель	RTD(T12-T24)				
Вычислитель	FP-93-P/FP-93-N	160/160	77/280	165/277	0,6/6,8
Запорный клапан	2GV Crane	178-293	460-520	152-197	21-39

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на фирменную табличку и на титульный лист эксплуатационной документации.

КОМПЛЕКТНОСТЬ

- Расходомер − 1 шт.
- 2. Термопреобразователь 1 шт. (по заказу)
- 3. Датчик давления 1 шт. (по заказу)
- 4. Вычислитель с блоком питания 220 В, 50 Гц 1 шт. (по заказу)
- 5. Защитная гильза для термопреобразователя 1 шт. (по заказу)
- 6. Запорная арматура для датчика давления 1 компл. (по заказу)
- 7. Запорный стальной фланцевый клапан с фитингами 1 шт. (по заказу, только для моделей 910, 960)
- 8. Комплект эксплуатационной документации и методика поверки 1 компл.

ПОВЕРКА

Поверка расходомеров-счетчиков проводится по методике "Рекомендация. Расходомеры-счетчики вихревые погружные V-Bar. Методика поверки", утвержденной ВНИИМС в 2006 г.

Основное поверочное оборудование:

- поверочная установка объемного или массового типа, работающая на воде или воздухе и имеющая погрешность воспроизведения расхода и/или объема не более 1/3 от погрешности поверяемого расходомера, например:
- а) поверочная расходомерная установка с кавитационными соплами для воды типа ОРУКС-400, основная погрешность $\pm 0.15\%$; пределы воспроизведения расходов от 12.5 до $400 \text{ м}^3/\text{ч}$.
- б) поверочная расходомерная установка с соплами Витошинского для воздуха с диапазоном воспроизведения расходов от 10 до 1600 $\text{m}^3/\text{ч}$ с погрешностью измерения не более $\pm 0,35\%$ (Госреестр №14431).
- термостаты жидкостные для воспроизведения температур в диапазоне от 0 до $+600~^{0}$ C, температурный градиент не более $0.02~^{0}$ C/cм;
- Генератор импульсов Г5-82 Диапазон частот от 1 до 10000 Гц, амплитуда от 0 до 5 В;
- Частотомер Ч3-63. Диапазон частот от 1 до 10000 Гц, амплитуда от 0 до 5 В;
- Вольтметр универсальный В7-46, 0-100 мА, погрешность не более 0,02%.

Межповерочный интервал - 4 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 28723 "Расходомеры скоростные, электромагнитные и вихревые. Общие технические требования и методы испытаний."

Техническая документация фирмы.

ЗАКЛЮЧЕНИЕ

Тип расходомеров-счетчиков вихревых погружных V-Ваг утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа и метрологически обеспечен при выпуске из производства и в эксплуатации

Изготовитель – фирма EMCO Flow Systems a Division of Spirax Sarco, Inc. (EMCO), США.

Адрес: 1831 Lefthand Suite C, Longmont, CO 80501, USA.

Телефон: (303)682-70-61 Факс: (303)682-70-69 http://www.emcoflow.com

Представитель фирмы

EMCO Flow Systems a Division of Spirax Sarco, Inc.

Г.И. Сычев